Recent Publications
27. Back action evasion in optical lever detection.
S. Hao and T. P. Purdy
Optica, arXiv:2212.08197
26. Detecting Acoustic Blackbody Radiation with an Optomechanical Antenna.
R. Singh and T. P. Purdy
Physical Review Letters, arXiv:1911.09607, PDF
25. Beyond Spontaneous Emission: Giant Atom Bounded in Continuum.
S. Guo, Y Wang, T. P. Purdy, J. M. Taylor
arXiv:1912.09980, PDF
24. News & Veiws: Bright squeezed light reduces back-action.
Thomas Purdy
Nature Photonics 14, 1-2 (2020), PDF
Older Publications (Pre-2019)
23. Quantum-based vacuum metrology at NIST.
Julia Scherschligt, James A. Fedchak, Zeeshan Ahmed, Daniel S. Barker, Kevin Douglass, Stephen Eckel, Edward Hanson, Jay Hendricks, Nikolai Klimov, T. P. Purdy, Jacob Ricker, Robinjeet Singh, and Jack Stone
J. Vac. Sci. Technol. A. 36, 040801(2018), PDF
22. Towards Replacing Resistance Thermometry with Photonic Thermometry.
N. N. Klimov, T. P. Purdy, Z. Ahmed
Sensors and Actuators A:Physical 269, 308-312(2018), arXiv, PDF
21. Quantum correlations from a room-temperature optomechanical cavity.
T. P. Purdy, K. E. Grutter, K. Srinivasan, and J. M. Taylor
Science 356:1265–1268(2017), arXiv, PDF
20. Cooling a Harmonic Oscillator by Optomechanical Modification of Its Bath.
X. Xu, T. P. Purdy, and J. M. Taylor
Phys. Rev. Lett 118:223602(2017), arXiv, PDF
19. Laser cooling of a micromechanical membrane to the quantum backaction limit.
R.W. Peterson, T. P. Purdy, N. S. Kampel, R.W. Andrews, P.-L. Yu, K.W. Lehnert, and C. A. Regal
Phys. Rev. Lett. 116:063601(2016), arXiv, PDF
18. Optomechanical Raman-ratio thermometry.
T. P. Purdy, P.-L. Yu, N. S. Kampel, R. W. Peterson, K. Cicak, R. W. Simmonds, and C. A. Regal.
Phys. Rev. A 92:031802(R)(2015), arXiv, PDF
17. On-Chip Integrated Silicon Photonic Thermometers.
N. N. Klimov, T. P. Purdy, and Zeeshan Ahmed
Thermometers. Sensors & Transducers 191:67(2015), PDF
16. Tensile-strained InxGa1−xP membranes for cavity optomechanics.
T. P. Purdy, K. E. Grutter, K. Srinivasan, and J. M. Taylor
Appl. Phys. Lett., 104:201908(2014), arXiv, PDF
15. Bidrectional and efficient conversion between microwave and optical light.
R.W. Andrews, R.W. Peterson, T. P. Purdy, K. Cicak, R.W. Simmonds, C. A. Regal, and K. W. Lehnert.
Nature Phys., 10:321(2014), arXiv, PDF
14. A phononic bandgap shield for high-Q membrane microresonators.
P.-L. Yu, K. Cicak, N. S. Kampel, Y. Tsaturyan, T. P. Purdy, R.W. Simmonds, and C. A. Regal
Appl. Phys. Lett., 104:023510 (2014) , PDF
13. Strong optomechanical squeezing of light.
T. P. Purdy, P.-L. Yu, R. W. Peterson, N. S. Kampel, and C. A. Regal
Phys. Rev. X, 3:031012(2013) , arXiv , PDF
12. Observation of radiation pressure shot noise on a macroscopic object.
T. P. Purdy, R. W. Peterson, and C. A. Regal
Science, 339:801–804(2013), arXiv, PDF
11. Cavity optomechanics with Si3N4 membranes at cryogenic temperatures.
T. P. Purdy, R.W. Peterson, P.-L. Yu, and C. A. Regal
New J. Phys., 14(11):115021(2012), arXiv, PDF
10. Bidrectional and efficient conversion between microwave and optical light.
R.W. Andrews, R.W. Peterson, T. P. Purdy, K. Cicak, R.W. Simmonds, C. A. Regal, and K. W. Lehnert.
Nature Phys., 10:321(2014), arXiv, PDF
9. Control of material damping in high-Q membrane microresonators.
P.-L. Yu, T. P. Purdy, and C. A. Regal
Phys. Rev. Lett., 108:083603 (2012), arXiv, PDF
8. Cavity-aided magnetic resonance microscopy of atomic transport in optical lattices.
N. Brahms, T. P. Purdy, D. W. C. Brooks, T. Botter, and D. M. Stamper-Kurn
Nature Phys., 7:604–607(2011), arXiv, PDF
7. Tunable cavity optomechanics with ultracold atoms.
T. P. Purdy, D.W. C. Brooks, T. Botter, N. Brahms, Z.-Y. Ma, and D. M. Stamper- Kurn
Phys. Rev. Lett., 105:133602(2010), arXiv, PDF
6. Integrating cavity quantum electrodynamics and ultracold-atom chips with on-chip dielectric mirrors and temperature stabilization.
T. P. Purdy and D. M. Stamper-Kurn
Appl. Phys. B, 90(2008), arXiv, PDF
5. Bose-Einstein condensation in a mm-scale ioffe-prichard trap.
K. L. Moore, T. P. Purdy, K. W. Murch, K. R. Brown, K. Dani, S. Gupta, and D. M. Stamper-Kurn.
Appl. Phys. B, 82(2006), arXiv, PDF
4. Bose- Einstein condensation in a circular waveguide.
P.-L. Yu, K. Cicak, N. S. Kampel, Y. Tsaturyan, T. P. Purdy, R.W. Simmonds, and C. A. Regal
Phys. Rev. Lett., 95:143201 (2005), arXiv, PDF
3. Collimated, single-pass atom source from a pulsed alkali metal dispenser for laser-cooling experiments.
K. L. Moore, T. P. Purdy, K. W. Murch, S. Leslie, S. Gupta, and D. M. Stamper- Kurn
Rev. Sci. Instrum., 76:023106(2005), arXiv, PDF
2. Electromagnetically induced transparency and reduced speeds for single photons in a fully quantized model.
T. P. Purdy and M. Ligare.
J. Opt. B:Quantum Semiclass. Opt., 5(3):289(2003), arXiv, PDF
1. Manifestation of classical wave delays in a fully quantized model of the scattering of a single photon.
T. P. Purdy, D. R. Taylor, and M. Ligare
J. Opt. B:Quantum Semiclass. Opt., 5(1):85(2003), arXiv, PDF